Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(13-16): 5051-5061, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35804159

RESUMEN

The enzyme nitrogenase performs the process of biological nitrogen fixation (BNF), converting atmospheric dinitrogen gas into the biologically accessible ammonia, which is rapidly protonated at physiological pH to yield ammonium. The reduction of dinitrogen requires both ATP and electrons. Azotobacter vinelandii is an aerobic nitrogen-fixing microbe that is a model organism for the study of BNF. Previous reports have described strains of A. vinelandii that are partially deregulated for BNF, resulting in the release of large quantities of ammonium into the growth medium. Determining the source of the electrons required to drive BNF is complicated by the existence of several protein complexes in A. vinelandii that have been linked to BNF in other species. In this work, we used the high-ammonium-accumulating strains of A. vinelandii to probe the source of electrons to nitrogenase by disrupting the Rnf1 and Fix complexes. The results of this work demonstrate the potential of these strains to be used as a tool to investigate the contributions of other enzymes or complexes in the process of BNF. These results provide strong evidence that the Rnf1 complex of A. vinelandii is the primary source of electrons delivered to the nitrogenase enzyme in this partially deregulated strain. The Fix complex under native regulation was unable to provide sufficient electrons to accumulate extracellular ammonium in the absence of the Rnf1 complex. Increased ammonium accumulation could be attained in a strain lacking the Rnf1 complex if the genes of the Fix protein complex were relocated behind the strong promoter of the S-layer protein but still failed to achieve the levels found with just the Rnf1 complex by itself. KEY POINTS: • The Rnf1 complex is integral to ammonium accumulation in A. vinelandii. • The Fix complex can be deleted and still achieve ammonium accumulation in A. vinelandii. • A. vinelandii can be engineered to increase the contribution of the Fix complex to ammonium accumulation.


Asunto(s)
Compuestos de Amonio , Azotobacter vinelandii , Compuestos de Amonio/metabolismo , Electrones , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo
2.
Biochemistry ; 61(10): 922-932, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35507417

RESUMEN

The biosynthesis of wax esters and triglycerides in bacteria is accomplished through the action of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase). A hallmark of these enzymes is the broad substrate profile that accepts alcohols, diglycerides, and fatty acyl-CoAs of various carbon chain lengths and degrees of branching. These enzymes have a broad biotechnological potential due to their role in producing high-value lipids or simple fuels similar to biodiesel through biosynthetic routes. Recently, a crystal structure was solved for the wax ester synthase from Marinobacter aquaeolei VT8 (Maqu_0168), providing a much clearer picture of the architecture of this enzyme and enabling a more precise analysis of the important structural features of the protein. In this work, we used the structure to canvas amino acids lining the proposed substrate-binding pockets and tested the effects of exchanging specific residues on the substrate profiles. We also developed an approach to better probe the residues that alter fatty acyl-CoA selectivity, which has proven more difficult to investigate. Our findings provide an improved blueprint for future efforts to understand how these enzymes position substrates for catalysis and to tailor or improve these enzymes in future biosynthetic schemes.


Asunto(s)
Aciltransferasas , Ceras , Acilcoenzima A/metabolismo , Aciltransferasas/química , Diacilglicerol O-Acetiltransferasa/metabolismo , Ésteres/química , Especificidad por Sustrato , Ceras/metabolismo
3.
Microb Cell Fact ; 19(1): 107, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429912

RESUMEN

BACKGROUND: The obligate aerobe Azotobacter vinelandii is a model organism for the study of biological nitrogen fixation (BNF). This bacterium regulates the process of BNF through the two component NifL and NifA system, where NifA acts as an activator, while NifL acts as an anti-activator based on various metabolic signals within the cell. Disruption of the nifL component in the nifLA operon in a precise manner results in a deregulated phenotype that produces levels of ammonium that far surpass the requirements within the cell, and results in the release of up to 30 mM of ammonium into the growth medium. While many studies have probed the factors affecting growth of A. vinelandii, the features important to maximizing this high-ammonium-releasing phenotype have not been fully investigated. RESULTS: In this work, we report the effect of temperature, medium composition, and oxygen requirements on sustaining and maximizing elevated levels of ammonium production from a nitrogenase deregulated strain. We further investigated several pathways, including ammonium uptake through the transporter AmtB, which could limit yields through energy loss or futile recycling steps. Following optimization, we compared sugar consumption and ammonium production, to attain correlations and energy requirements to drive this process in vivo. Ammonium yields indicate that between 5 and 8% of cellular protein is fully active nitrogenase MoFe protein (NifDK) under these conditions. CONCLUSIONS: These findings provide important process optimization parameters, and illustrate that further improvements to this phenotype can be accomplished by eliminating futile cycles.


Asunto(s)
Compuestos de Amonio/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno/genética , Compuestos de Amonio/análisis , Azotobacter vinelandii/enzimología , Medios de Cultivo/química , Genes Bacterianos , Fijación del Nitrógeno/fisiología , Nitrogenasa/metabolismo , Oxígeno/metabolismo , Temperatura , Factores de Transcripción/genética
4.
Appl Microbiol Biotechnol ; 102(23): 10315-10325, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30250977

RESUMEN

Biological nitrogen fixation (BNF) through the enzyme nitrogenase is performed by a unique class of organisms known as diazotrophs. One interesting facet of BNF is that it produces molecular hydrogen (H2) as a requisite by-product. In the absence of N2 substrate, or under conditions that limit access of N2 to the enzyme through modifications of amino acids near the active site, nitrogenase activity can be redirected toward a role as a dedicated hydrogenase. In free-living diazotrophs, nitrogenases are tightly regulated to minimize BNF to meet only the growth requirements of the cell, and are often accompanied by uptake hydrogenases that oxidize the H2 by-product to recover the electrons from this product. The wild-type strain of Azotobacter vinelandii performs all of the tasks described above to minimize losses of H2 while also growing as an obligate aerobe. Individual alterations to A. vinelandii have been demonstrated that disrupt key aspects of the N2 reduction cycle, thereby diverting resources and energy toward the production of H2. In this work, we have combined three approaches to override the primary regulation of BNF and redirect metabolism to drive biological H2 production by nitrogenase in A. vinelandii. The resulting H2-producing strain was further utilized as a surrogate to study secondary, post-transcriptional regulation of BNF by several key nitrogen-containing metabolites. The improvement in yields of H2 that were achieved through various combinations of these three approaches was compared and is presented along with the insights into inhibition of BNF by several nitrogen compounds that are common in various waste streams. The findings indicate that both ammonium and nitrite hinder BNF through this secondary inhibition, but urea and nitrate do not. These results provide essential details to inform future biosynthetic approaches to yield nitrogen products that do not inadvertently inhibit BNF.


Asunto(s)
Azotobacter vinelandii/enzimología , Hidrógeno/metabolismo , Compuestos de Nitrógeno/metabolismo , Fijación del Nitrógeno , Compuestos de Amonio/metabolismo , Dominio Catalítico , Electrones , Concentración de Iones de Hidrógeno , Microbiología Industrial , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogenasa , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Urea/metabolismo
5.
Plant J ; 93(3): 566-586, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178410

RESUMEN

Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 - which does not release significant quantities of sugars to the extracellular space - was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 - which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport.


Asunto(s)
Chlorophyta/genética , Chlorophyta/metabolismo , Maltosa/metabolismo , Chlorella/genética , Chlorella/metabolismo , Espacio Extracelular/genética , Espacio Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Concentración de Iones de Hidrógeno , Filogenia , Proteínas de Plantas/genética , Azúcares/metabolismo
6.
Appl Environ Microbiol ; 83(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28802272

RESUMEN

Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium.IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain.


Asunto(s)
Compuestos de Amonio/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas Bacterianas/genética , Fijación del Nitrógeno , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hidrogenasas/genética , Hidrogenasas/metabolismo , Familia de Multigenes , Nitrógeno/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo
7.
Biochemistry ; 56(32): 4177-4190, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28704608

RESUMEN

The biological reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (Em = -320 mV) coupled to reduction of flavodoxin semiquinone (Em = -460 mV) and reduction of coenzyme Q (Em = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.


Asunto(s)
Azotobacter vinelandii/enzimología , Modelos Moleculares , Complejos Multienzimáticos/química , Nitrogenasa/química , Catálisis , Transporte de Electrón/fisiología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Estructura Cuaternaria de Proteína
8.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28389542

RESUMEN

Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no. WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD+ cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided.IMPORTANCE This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids and provides a likely picture of how the fatty aldehyde and NAD+ are bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and comparisons of specificities for the five enzymes that were characterized, correlations to the potential roles played by specific residues within the structure may be drawn.


Asunto(s)
Acinetobacter/enzimología , Aldehído Oxidorreductasas/química , Aldehídos/metabolismo , Proteínas Bacterianas/química , Marinobacter/enzimología , Acinetobacter/química , Acinetobacter/clasificación , Acinetobacter/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cinética , Marinobacter/química , Marinobacter/clasificación , Marinobacter/genética , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Especificidad por Sustrato
9.
Appl Environ Microbiol ; 81(13): 4316-28, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25888177

RESUMEN

Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes.


Asunto(s)
Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Eliminación de Gen , Nitrógeno/metabolismo , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Pruebas Genéticas , Mutagénesis Insercional , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...